What do all things have in common?

Mathematics

Why is it so hard to prove that e+pi or e*pi is irrational/rational?

The reason why it is so hard to prove is actually very easy to answer. These constants, identities, and variations being referred to in this post, and others like it, all lay embedded in a far deeper substrate than current mathematics has yet explored.

Mathematics has been, and always shall be my ‘first love’, and it has provided for me all of these years. I am not criticising mathematics in any way. It is my firm belief that mathematics will overcome this current situation and eventually be quite able to examine these kinds of questions in a much more expansive and deeper way.

We need to extend our examination of mathematical knowledge, both in depth and in scope, out farther and in deeper than numbers (sets and categories as well – even more below) have yet done. I’ll introduce you to a pattern you may have already noticed in the current stage of our mathematical endeavour.

We all know there are numbers which lay outside of Q which we call Irrational numbers. There are also numbers which lay outside of R which we call Imaginary numbers. They have both been found, because the domain of questioning exceeded the range of answers being sought within the properties each of those numbers. This pattern continues in other ways, as well.

We also know there are abstractions and/or extensions of Complex numbers where the ‘air starts to get thin’ and mathematical properties start to ‘fade away’: Quaternions, Octonians, Sedenions,…

This pattern continues in other ways: Holors, for example, which extend and include mathematical entities such as Complex numbers, scalars, vectors, matrices, tensors, Quaternions, and other hypercomplex numbers, yet are still capable of providing a different algebra which is consistent with real algebra.

The framing of our answers to mathematical questions is also evolving. Logic was, for example, limited to quite sophisticated methods that all were restricted to a boolean context. Then we found other questions which led to boundary, multi-valued, fuzzy, and fractal logics, among a few others I haven’t mentioned yet.

Even our validity claims are evolving. We are beginning to ask questions which require answers which transcend relationship properties such as causality, equivalence, and inference in all of their forms. Even the idea of a binary relationship is being transcended into finitary versions (which I use in my work). There are many more of these various patterns which I may write about in the future.

They all have at least one thing in common: each time we extend our reach in terms of scope or depth, we find new ways of seeing things which we saw before and/or see new things which were before not seen.

There are many ‘voices’ in this ‘mathematical fugue’ which ‘weaves’ everything together: they are the constants, variations, identities, and the relationships they share with each other.

The constants e, π, i, ϕ, c, g, h  all denote or involve ‘special’ relationships of some kind. Special in the sense that they are completely unique.

For example:

  • e is the identity of change (some would say proportion, but that’s not entirely correct).
  • π is the identity of periodicity. There’s much more going on with \pi than simply being a component of arc or, in a completely different context, a component of area

These relationships actually transcend mathematics. Mathematics ‘consumes’ their utility (making use of those relationships), but they cannot be ‘corralled in’ as if they were ‘horses on the farm’ of mathematics. Their uniqueness cannot be completely understood via equivalence classes alone.

  • They are ubiquitous and therefore not algebraic.
  • They are pre-nascent to number, equivalence classes, and validity claims and are therefore not rational.

These are not the only reasons.

It’s also about WHERE they are embedded in the knowledge substrate compared to the concept of number, set, category…. They lay more deeply embedded in that substrate.

The reason why your question is so hard for mathematics to answer is, because our current mathematics is, as yet, unable to decide. We need to ‘see’ these problems with a more complete set of ‘optics’ that will yield them to mathematical scrutiny. 

Question on Quora


Getting Hypertension About Hyperreals

HyperReals(Links below)

This system is quite interesting if we allow ourselves to talk about the qualities of infinite sets as if we can know their character completely. The problem is, any discussion of an infinite set includes their definition which MAY NOT be the same as any characterisation which they may actually have.

Also, and more importantly, interiority as well as exteriority are accessible without the use of this system. These ‘Hyperreals’ are an ontological approach to epistemology via characteristics/properties we cannot really know. There can be no both true and verifiable validity claim in this system.

https://www.youtube.com/watch?v=rJWe1BunlXI (Part1)
https://www.youtube.com/watch?v=jBmJWEQTl1w (Part2)


Knowledge Representation – Holographic Heart Torus

Holographic Heart Torus

Holographic Heart Torus by Ryan Cameron on YouTube


Lateral Numbers – How ‘Imaginary Numbers’ May Be Understood

Rbi0Y

First, allow me to rename theses numbers during the remainder of this post to lateral numbers, in accordance to the naming convention as was recommended by Gauss. I have a special reason for using this naming convention. It will later become apparent why I’ve done this.

If we examine lateral numbers algebraically, a pattern emerges:

i^0 = 1

i^1 = i

i^2 = -1

i^3 = -i

i^4 = (i^2)^2 = (-1)^2 = 1

i^5 = i \cdot i^4 = i

i^6 = i^2 \cdot i^4 = (-1)(1) = -1

i^7 = i^2 \cdot i^5 = (-1)i = -i

i^8 = i^4 \cdot i^4 = (1)(1) = 1

When we raise lateral numbers to higher powers, the answers do not get higher and higher in value like other numbers do. Instead, a pattern emerges after every 4th multiplication. This pattern never ceases.

All other numbers, besides laterals, have a place on what currently is called the ‘Real number line’.

I qualify the naming of the Real Numbers, because even their conceptualisation has come into question by some very incisive modern mathematicians. That is a very ‘volatile’ subject for conventional mathematicians and would take us off on a different tangent, so I’ll leave that idea for a different post.

If we look for laterals on any conventional Real number line, we will never ‘locate’ them. They are found there, but we need to look at numbers differently in order to ‘see’ them.

Lateral numbers solve one problem in particular: to find a number, which when multiplied by itself, yields another negative number.
Lateral numbers unify the number line with the algebraic pattern shown above.

ComplexNumbers Example 001

2 is positive and, when multiplied by itself, yields a positive number. It maintains direction on the number line.

ComplexNumbers Example 002 - Negative

When one of the numbers (leaving squaring briefly) being multiplied is negative, the multiplication yields a negative number. The direction ‘flips’ 180° into the opposite direction.

ComplexNumbers Example 003 - Negative Squaring

Multiplying -2 by -2 brings us back to the positive direction, because of the change resulting in multiplying by a negative number, which always flips our direction on the number line.

So, it appears as if there’s no way of landing on a negative number, right? We need a number that only rotates 90°, instead of the 180° when using negative numbers. This is where lateral numbers come into play.

ComplexNumbers Example 004 - Negative Squaring using lateral numbers01

If we place another lateral axis perpendicular to our ‘Real’ number line, we obtain the desired fit of geometry with our algebra.

When we multiply our ‘Real’ number 1 by i, we get i algebraically, which geometrically corresponds to a 90° rotation from 1 to i.

Now, multiplying by i again results in i squared, which is -1. This additional 90° rotation equals the customary 180° rotation when multiplying by -1 (above).

ComplexNumbers Example 004 - Negative Squaring using lateral numbers

We may even look at this point as if we were viewing it down a perpendicular axis of the origin itself (moving in towards the origin from our vantage point, through the origin, and then out the back of our screen).

[If we allow this interpretation, we can identify the ‘spin’ of a point around the axis of its own origin! The amount of spin is determined by how much the point moves laterally in terms of i.
We may even determine in which direction the rotation is made. I’ll add how this is done to this post soon.]

Each time we increase our rotation by multiplying by a factor of i, we increase our rotation another 90°, as seen here:

ComplexNumbers Example 004 - Negative Squaring using lateral numbers03

and,

ComplexNumbers Example 004 - Negative Squaring using lateral numbers04

The cycle repeats itself on every 4th power of i.

We could even add additional lateral numbers to any arbitrary point. This is what I do in my knowledge representations of holons. For example a point at say 5 may be expressed as any number of laterals i, j, k,… simply by adding or subtracting some amount of i, j, k,…:

5 + i + j +k +…

Or better as:

[5, i, j, k,…]

Seeing numbers in this fashion makes a point n-dimensional.


Strictly Speaking Can’t! Natural Language Won’t?

Werner Heisenberg - on Language of Mathematics

Physics is only complex, because it’s in someone’s interest to have it that way. The way to understanding, even if you don’t understand science, was paved with words. Even if those words led only to a symbolic form of understanding.

Common ordinary language is quite capable of explaining physics. Mathematics is simply more precise than common language. Modern Mathematics pays the price for that precision by being overly complex and subservient to causal and compositional relations. These are limitations that metaphysics and philosophy do not have.

Words in language have a structure that mathematics alone will never see as it looks for their structure and dynamics in the wrong places and in the wrong ways. Modern pure mathematics lacks an underlying expression of inherent purpose in its ‘tool set’.

With natural language we are even able to cross the ‘event horizon’ into interiority (where unity makes its journey through the non-dual into the causal realm). It is a place where mathematics may also ‘visit’ and investigate, but only with some metaphysical foundation to navigate with. The ‘landscape’ is very different there… where even time and space ‘behave’ (manifest) differently. Yet common language can take us there! Why? It’s made of the ‘right stuff’!

The mono-logical gaze with its incipient ontological foundation, as found in (modern) pure mathematics, is too myopic. That’s why languages such as Category Theory, although subtle and general in nature, even lose their way. They can tell us how we got there, but none can tell us why we wanted to get there in the first place!

It’s easy to expose modern corporate science’s (mainstream) limitations with this limited tool set – you need simply ask questions like: “What in my methodology inherently expresses why am I looking in here?” (what purpose) or “What assumptions am I making that I’m not even aware of?” or “Why does it choose to do that? and you’re already there where ontology falls flat on its face.

Even questions like these are met with disdain, intolerance and ridicule (the shadow knows it can’t see them and wills to banish what it cannot)! And that’s where science begins to resemble religion (psyence).

Those are also some of the reasons why philosophers and philosophy have almost disappeared from the mainstream. I’ll give you a few philosophical hints to pique your interest.

Why do they call it Chaos Theory and not Cosmos Theory?
Why coincidence and not synchronicity?
Why entropy and not centropy?

Why particle and not field?
(many more examples…)


Are sets, in an abstract sense, one of the most fundamental objects in contemporary mathematics?

Equivalence Relation

Yes and no.

The equivalence relation lies deeper within the knowledge representation and it’s foundation.

There are other knowledge prerequisites which lie even deeper within the knowledge substrate than the equivalence relation.

The concepts of a boundary, of quantity, membership, reflexivity, symmetry, transitivity, and relation are some examples.

http://bit.ly/2wPV7RN


Is Mathematics Or Philosophy More Fundamental?

fly-by

Is Mathematics Or Philosophy More Fundamental?

Answer: Philosophy is more fundamental than mathematics.

This is changing, but mathematics is incapable at this time of comprehensively describing epistemology, whereas, philosophy can.

Hence; mathematics is restrained to pure ontology. It does not reach far enough into the universe to distinguish anything other than ontologies. This will change soon. I am working on exactly this problem. See http://mathematica-universalis.com for more information on my work. (I’m not selling anything on this site.)

Also, mathematics cannot be done without expressing some kind of philosophy to underlie any axioms which it needs to function.

PROOF:

Implication is a ‘given’ in mathematics. It assumes a relation which we call implication. Mathematics certainly ‘consumes’ them as a means to create inferences, but the inference form, the antecedent, and the consequent are implicit axioms based upon an underlying metaphysics.

Ergo: philosophy is more general and universal than mathematics.

Often epistemology is considered separate from metaphysics, but that is incorrect, because you cannot answer questions as to ‘How do we know?” without an underlying metaphysical framework within which such a question and answer can be considered.